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Analysing aid activities has been in the centre of academic research; 

nevertheless, it is demanding to conduct long-term time series analyses due to 

missing data. Although there are several methods available to overcome this 

challenge, their distortion effect may result in unpredicted impacts on aid 

allocation. Thus, this paper aims to analyse the long-term motivations of US 

aid allocation with panel regression models. Two methods of handling 

missing data were tested in order to answer the question whether there is a 

significant difference in the results or not. Results suggest that there are 

several tools in the hands of a researcher to overcome missing data problems 

without any distorting effects. Furthermore, results reinforce the idea that US 

aid allocation has mainly been motivated by its economic drivers (export 

possibilities) rather than by war or conflict fears in the long run. 
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I. INTRODUCTION 

Nowadays, the migration crisis in the European Union has raised the 

attention to developing countries and their economic and social challenges: the 

consequences of their unhandled economic and social problems have resulted in 

significant and costly global issues. As it is well-known, there are several 

attempts and international initiatives to promote development in these countries. 

They appear both on international and national level, and there are local 

initiatives as well. There is still debate on the impacts of foreign direct 

investment (e.g. Gohou and Soumaré 2012, Hossain 2015) or, for example, 
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microfinance (Bangoura 2012) on poverty reduction and development. However, 

one of the most important global attempts is the international development 

cooperation and allocation of foreign aid. The effectiveness of foreign aid 

provided by either bilateral donors (developed countries, emerging donors) or 

multilateral agencies (international organisations) is widely analysed with 

different statistical and econometric methods. Since these results are the ground 

for further attempts of aid activity, at the same time, influencing policy decisions, 

the reliability of data, the methods used and the results of empirical aid analyses 

are essential. 

Aid data mainly meet the accredited reliability criteria. For instance, the 

Organisation for Economic Cooperation and Development‘s (OECD) Creditor 

Reporting System is widely used in aid analyses. The OECD and its 

Development Assistance Committee (DAC) are responsible for reliability; 

however, donors themselves submit reports and data on their own aid activity. 

Despite this fact, in several cases, it is very difficult to conduct (long-term) time 

series analyses because of missing data (due to the lack of report by donors). As a 

result, analysing long-term changes in motivations of donor countries or 

examining long-term economic effects of aid is still a great challenge. In order to 

handle the missing data problem, there are numerous statistical and econometric 

methods. This paper aims to analyse whether there is any difference between the 

different methods regarding their results on the field of international development 

cooperation and aid allocation. In order to answer the question, we used the 

United States as an example and analysed what kind of factors determined its aid 

allocation between 1967 and 2014. This is the longest time series we could gain 

from the OECD database covering more than 60 recipient countries.  

The structure of the paper is as follows. Section I gives an overview on the 

aid allocation of the United States detailing the motivation background. This 

theoretical background gives the basis for selecting indicators. Section II outlines 

the methodological background describing the challenges of missing data by 

introducing their types and possible solutions. The last section contains the 

empirical analysis of the aid allocation of the United States. This empirical 

analysis introduces different solutions to the problem of handling missing data; 

therefore, we can learn which method could be the most effective. 

II. MOTIVATIONS BEHIND AID ALLOCATIONS 

The United States of America is one of the largest donors in the world. 

According to the OECD aid database (OECD CRS 2016), the United States 
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provides slightly more than 18 per cent of the global aid, while it is a bit more 

(above 20 per cent) if we take only the performance of the OECD Development 

Assistance Committee into consideration. These data also suggest that the United 

States finds international development cooperation as an important part of its 

own foreign policy (Tarnoff and Nowels 2004); nevertheless, the US motivations 

behind aid allocation have changed over the years. 

2.1 General Motivations Behind Aid Allocation 

By now, aid effectiveness and aid motivations have been thoroughly 

analysed (see, for instance, Doucouliagos and Paldam 2009, Hansen and Tarp 

2001, McGillivray 2003); nonetheless, the results are not unambiguous. 

Regarding the motivations of aid allocations, it is observed that donors provide 

aid for several reasons, although their motivations and priorities have changed a 

lot during the last several decades (Szent-Iványi and Lightfoot 2015). To 

understand motivations, it is essential to consider both the point of view of 

donors and the point of view of the recipient countries, since unpredictable aid 

may increase corruption level in developing countries (Kangoye 2013). Besides 

some moral reasons, the motivations behind aid allocations of donor countries 

can be grouped as follows: 

Political interests of the donors: Alesina and Dollar (1998), Younas (2008) 

and Einarsdottir and Gunnlaugsson (2016) point out that strategic and political 

interests of donors are more important than the economic needs of recipient 

countries, and ethical background does not influence aid allocation significantly 

either. Furthermore, colonial past and political alliances also determine the 

amount of the aid. 

Governance of the recipient countries: In their research, Alesina and Dollar 

(1998) and Berthelemy and Tichit (2004) find that countries in the process of 

democratisation are supported more. Collier and Dollar (2001) emphasize that 

foreign aid can contribute to the improvement of the public services provided by 

governments; and these results are more spectacular if aid flows to poorer 

countries. Hossain (2015) also claims that stable macroeconomic and fiscal 

policies and political stability are needed for least developed countries to attract 

more capital. 

Policies and internal changes in donor countries also influence aid 

allocation, as the studies of Round and Odedokun (2004) and Chong and 

Gradstein (2008) proved. Furthermore, if there is a conservative government in a 

donor country, aid allocations to low income countries will likely decline 

(Tingley 2010). The internal situation (inequality, corruption, political leaning 
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and taxes) in a donor country also influences aid allocation, and these 

circumstances seem to have larger effects than the economic conditions in the 

recipient country (Chong and Gradstein 2008). 

The 4P also affects aid allocation as Clist (2011) details. In this sense, 4P 

refers to poverty, population, policy (including good governance and freedom) 

and proximity (including religion, language, colonial past and trade relations).  

War on terrorism has recently become a crucial motivation in aid allocation, 

too. It is seen that more aid is provided to countries where positive regime 

changes and armed conflicts are expected. A similar tendency appears in 

neighbouring countries of a war-torn country (Brück and Xu 2012), the aim 

being to avoid further conflict and preserve peace. 

Anti-corruption movement also deserves special attention, since 1997 

multilateral donor agencies have provided less aid to more corrupt countries; 

while bilateral donors have supported countries regardless their corruption level. 

However, the difference between the two main donor groups is decreasing: 

before 1997, donor countries either did not pay attention to corruption level or 

provided aid to more corrupt countries, while nowadays donor countries have 

become more sensitive to corruption level, so the anti-corruption movement of 

international organisations seems to be successful (Charron 2010). 

2.2 Effects of Democratisation Process on Aid Allocation 

The Monterrey Consensus of 2002 emphasised that sound policies, good 

governance and rule of law should be a priority for donors while allocating aid 

(UN 2002, Dollar and Levin 2006). However, empirical results show that 

multilateral agencies started to pay attention to this requirement only after the 

Millennium, while bilateral aid allocation does not seem to consider these very 

priorities. Empirical results, on the other hand, indicate that aid effectiveness is 

better in countries with better and more stable governance. For instance, Hoeffler 

and Outram (2011) emphasize that development aid is more effective in countries 

where democracy and good governance exist, and more open and democratic 

countries receive 36 per cent more aid than less democratic countries; however, 

there are some exceptions: for instance, France pays less attention to these 

criteria (Alesina and Dollar 1998). Looking at human rights, donor countries are 

more likely to give aid to countries with better human rights records, but this 

result is reversed when other factors, for instance democracy, are controlled in 

the model (Clist 2011). On the other hand, the author emphasizes that donors 

tend to prefer democracy to human rights. Gates and Hoeffler (2004) found that 

globally a higher number of democratic countries had received more aid on 
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average, and their findings suggest that aid allocations of the Nordic donors 

follow this trend as well.  Furthermore, the donor community cuts aid 

disbursements in countries where there are coups d‘e´tat (Masaki 2016).  

There are also some counter-opinions. For instance, Reinsberg (2014) 

suggests that donor selectivity in favour of democratic policies and good 

governance remained very low, without any significant improvement over the 

last two decades. The author adds that more corrupt countries seem to receive 

more aid (similar to the results of Alesina and Dollar 1998). This result 

contradicts the findings of Charron (2010). To sum up, it seems that there is no 

consensus on the question whether a democratic country attracts more or less aid. 

It suggests that donors should be analysed separately. 

2.3 Motivations behind the US Aid Allocation 

Many studies suggest that the United States often behaves in a different way 

from other donor countries (Gates and Hoeffler 2004, Harrigan and Wang 2011, 

Masaki 2016). For example, there is no difference between the pre- and post-

Cold War aid allocation behaviour of the United States, as Balla and Reinhardt 

(2004) claim: the United States allocated a huge amount of aid to the 

neighbouring countries of conflict-affected areas and still continues to do so.  

The United States regularly follows its own geopolitical, commercial and 

other interests while allocating aid to developing countries (Harrigan and Wang 

2011). It does not accept the international norm of political conditionality, which 

results in higher amounts of aid granted to countries with coups, as Masaki 

(2016) adds. This norm was a feature of US aid allocation both during and after 

the Cold War.  

This may be explained by the fact that war on terror has become a crucial 

aspect of US aid allocation. Fleck and Kilby (2010) found that countries which 

had received military aid from the United States received economic aid as well 

almost in every case; however, the need of the countries (e.g. poverty) is not an 

important principle in United States aid allocation. As the findings of Hoeffler 

and Outram (2011) show, the United States provides more aid to countries with 

poorer human rights records, and the United States inherently values democracy 

for ideological reasons rather than any positive effect on poverty reduction (Clist 

2011). 

The United States Agency for International Development (USAID) has 

supported six important development objectives based on five main strategic 

goals in recent years. Table I shows net costs of these strategic goals and 
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objectives for the years of 2014 and 2015. The six main objectives of the USAID 

are Peace and Security, Governing Justly and Democratically, Investing in 

People, Economic Growth, Humanitarian Assistance, and Operating Unit 

Management. These objectives include further programme areas.
1
  

The data suggest that supported areas of US aid are largely in line with the 

classical objectives of foreign assistance (economic growth, humanitarian 

assistance, investing in people) and naturally also with the US foreign policy 

(peace, security, support democratisation process). There was a small increase in 

the total net cost of USAID operations: in 2014 it was 11,671,109 and in 2015 it 

was 12,528,594 thousand dollars. The two mostly supported areas in both years 

were Investing in People and Economic Growth, but the cost of the latter 

decreased from 2014 to 2015. The first two supported areas are followed by 

Humanitarian Assistance (2,121,191 thousand USD in 2014 and 2,783,754 

thousand USD in 2015), Governing Justly and Democratically (1,420,292 

thousand USD in 2014 and 1,400,277 thousand USD in 2015) and Operating 

Unit Management (718,970 thousand USD in 2014 and 788,835 thousand USD 

in 2015). Finally, the least supported area was surprisingly Peace and Security 

with a small increase from 2014 to 2015 (671,264 thousand USD and 718,411 

thousand USD). 

 

 

 

 

                                                 
1
Peace and Security: counterterrorism, combating weapons of mass destruction, 

stabilisation operations and security sector reform, counternarcotics, transitional crime, 

conflict mitigation and reconciliation. 

Governing Justly and Democratically: rule of law and human rights, good governance, 

political competition and consensus-building, civil society. 

Investing in People: health, education, social and economic services, and protection for 

vulnerable populations. 

Economic Growth: macroeconomic foundation for growth, trade and investment, 

financial sector, infrastructure, agriculture, private sector competitiveness, economic 

opportunity, environment. 

Humanitarian Assistance: protection, assistance and solutions; disaster readiness, 

migration management. 

Operating Unit Management: crosscutting management and staffing, programme design 

and learning, administration and oversight. 
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TABLE I 

2014-2015 NET COST PROGRAMME AREAS (IN THOUSAND USD) 

Strategic goal Objective 2014 2015 

1. Counter threats to the US 

and the international order, 

and advance civilian 

security around the world  Peace and 

Security 
671,264 718,411 

2. Effectively manage 

transitions in the frontline 

states 

3. Expand and sustain the 

ranks of prosperous, stable 

and democratic states by 

promoting effective, 

accountable, democratic 

governance; respect for 

human rights; sustainable, 

broad-based economic 

growth and well-being 

Governing Justly 

and 

Democratically 

1,420,292 1,400,277 

Investing in 

People 

2,640,080 2,861,007 

Economic Growth 4,099,312 3,976,310 

4. Provide humanitarian 

assistance and support 

disaster mitigation 

Humanitarian 

Assistance 

2,121,191 2,783,754 

5. Build a 21
st
 century 

workforce; transparency 

and accountability 

Operating Unit 

Management 

718,970 788,835 

Total Net Cost of Operations   11,671,109 12,528,594 

Source: USAID 2014, 2015. 

It is not easy to decide what motivates US aid allocations in the long run: 

democracy-building or poverty decrease? Table I shows that the need of recipient 

countries is essential, while empirical studies suggest the opposite. Which 

countries can receive more aid from the United States? Can we notice any long-

run tendency? In order to answer these questions, we conducted a time-series 

analysis in which we handled the missing data problem in two ways. 

III. METHODOLOGICAL BACKGROUND 

Missing values may distort the quality of panel data, as list wise deletion 

weakens their statistical power (Park 2011). Missing data in empirical 

investigations cause several challenges for researchers working in the field of 
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market research, financial analysis or medical issues, especially in the case of 

longer time-series. The challenge is how to handle the missing data problem 

without significantly influencing the final results of an empirical investigation. 

Since empirical analyses have influence on policies, it is worth analysing whether 

there is a significant difference in terms of research findings when we use 

different methods, and, if there is, which method suggests the most reliable 

result. The aim of this paper is to study whether there is a distortion effect of 

using different models for handling missing data. In order to answer this 

question, we analyse the aid allocation of the United States empirically by 

comparing two of the three mainstream missing value handling methods.  

The relevant aid literature provides some methods available to answer this 

challenge: 

- Researchers often give a minimal value to the missing data which was 

marked zero before, and they calculate its natural log. For example, 

instead of 0 as aid amount, researchers calculate with 0.01. This method 

is used, for instance, by Hansen and Tarp (2001), Dollar and Levin 

(2004) and Younas (2008). 

- Wagner (2003) and Cali and te Velde (2011) shared the opinion that the 

formula of (1+aid) had a distortion effect; therefore, they used the 

following formula: ln(max(1, aid)) and they also added a dummy 

variable, where the dummy was 0 when the country received aid and 1 

when the country did not receive any support. 

- Udvari (2014) used a similar formula to Wagner (2003) and Cali and te 

Velde (2011), but she left the dummy variable out of the model arguing 

that this variable had no economic content. 

Since the way of handling the problem of missing data may have distorting 

effects (as Wagner 2003 showed in his research), and an out-of-date method may 

lead to unrealistic results and cause bad policy implications (McGillivray 2003), 

we find it crucial to understand missing data as a methodological issue, too. 

3.1 Types of Missing Data 

Three forms of missingness are defined by literature (Graham 2012, Junger 

and Leon 2015): the first one assumes that data is missing completely at random 

(MCAR), suggesting that missingness does not depend on the values of the data 

or on other observed particular variable, and their exclusion does not bias 

estimations due to their homogeneity (Junger and Leon 2015, Kang 2013). The 

second type, missing at random (MAR), occurs when dropout is conditionally 
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independent of the variable (Kang 2013), still one can assume some sort of 

mechanism behind missingness (Graham 2012). Their exclusion may corrupt 

temporal structures such as autocorrelation, trends, and seasonality (Junger and 

Leon 2015). The third type, missing not at random (MNAR), happens when it is 

possible to make an unbiased estimation to model the missing data. When 

missingness is beyond the researcher‘s control (their distribution is unknown), 

MAR is the primary assumption (Graham 2012).  

3.2 Methods for Handling Missing Aid Data 

There are three different approaches to assess the missing data problem 

(Baraldi et al. 2015). First, we can remove the time intervals where there is at 

least one missing data for a specific date. Listwise deletion or the last observation 

carried forward scheme can make time series more fragmented or may introduce 

bias in the estimation of the parameters unless there is a chance that our 

missingness is MCAR (Kang 2013). 

The second approach substitutes the missing data with an unconditional 

mean value or median (for skewed data, suggested by Junger and Leon 2015) of 

the available historical data. It has an impact similar to the last observation 

carried forward scheme until data is converted to differentials for future 

calculation and the returns reach a standard level (like zero mean and mode in 

financial time series). This solution is not recommended by Graham (2012) due 

to its distortions, since it results in a higher concentration around the mean and 

underestimates errors and variance at MCAR states (Junger and Leon 2015). 

Third, some computation based approaches reconstruct missing data through 

the minimisation of an error function derived from mean, variance or a likelihood 

ratio (Baraldi et al. 2015, Ceylan et al. 2013, Juan Carlos 2010). Expectation 

maximisation (EM) models apply maximum likelihoods to estimate the variance 

and covariance matrices of the data, while neural networks-based and genetic 

structure-based approaches (Ceylan et al. 2013, Juan Carlos 2010) are also 

available. The expectation maximisation process required more computation time 

in the past (Ruud 1991), and it needs a well specified data generation model 

(Houari et al. 2013), not relying on the MCAR assumption. ―Unbiasedness under 

MAR and higher efficiency under MCAR make maximum likelihood the method 

of choice in a situation with incomplete multinormal data‖ (Wothke 1998:19). 

This approach provides less biased data for listwise or pairwise deletion and 

mean-imputation methods; however, we should note that this advantage depends 

on the missing data rate, the covariance structure of the data and the size of the 

sample (Wothke 1998). 
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The present paper applies and compares two of the three mainstream missing 

value handling methods to capture their ability to influence panel regression 

coefficients. Let us assume n aid data (1), where country i (1 ≤ 𝑖 ≤ 𝑛) has the 

following d value for every y year with v sample size: 

𝐷𝑖 =  

𝑦1 𝑑𝑖,1
… …
𝑦𝑣 𝑑𝑖,𝑣

 . (1) 

There is also a kth (1 ≤ 𝑘 ≤ 𝑛, 𝑎𝑛𝑑 𝑘 ≠ 𝑖) country (2) with w data, and z 

(𝑧 ≠ 𝑦) time indices: 

𝐷𝑘 =  

𝑧1 𝑑𝑘,1

… …
𝑧𝑤 𝑑𝑘,𝑤

 .  (2) 

Upper 𝐷1,..,𝑖,𝑘,…𝑛matrices should be united for purposes of multivariate 

analysis which requires the synchronisation of time indices.  

Listwise deletion (3) means a T cap of specific time indices to exclude all 

cases where at least one value is missing: 

𝑇 = 𝑌 ∩ 𝑍.  (3) 

The effectiveness of this approach can be limited in case of a great number of 

missing data, with an empty T matrix as a result. 

The Last Observation Carried Forward (LSCF) (4) scheme replaces missing 

data with the last available data:  

𝑇 =  𝑌 ∪ 𝑍  𝑤𝑖𝑡𝑕 𝑑𝑖,𝑜 = 𝑑𝑖,𝑜−1.  (4) 

The LSCF procedure requires the addition of a very small positive ε =
10𝑑 , d → +∞ number to satisfy the 𝑒𝑝𝑖,𝑜−𝑝𝑖,𝑜−1 ≠ 0 requirement for a 𝑝𝑖,𝑜 =

𝑝𝑖,𝑜−1case if we would like to use logarithmic returns. The inclusion of ε will 

provide an asymptotical result 𝑒ε+𝑝𝑖,𝑜−𝑝𝑖,𝑜−1 ≠ 0 for 𝑝𝑖,𝑜 = 𝑝𝑖,𝑜−1cases as well: 

𝑒ε ≈ 0. 

Regularised expectation-maximisation (EM) algorithm is based on iterated 

linear regression analyses, but it replaces the conditional maximum likelihood 

estimation of regression parameters for Gaussian data (5), following Schneider 

(2001). For each 𝑑𝑡,𝑖 ∈ 𝐷 with missing values, the relationship between the 

available and missing values of data matrix is modelled by a linear regression 

model: 

𝑑𝑁𝑎𝑁 = 𝜇𝑁𝑎𝑁 +  𝑑𝑎 − 𝜇𝑎 𝐵 + 𝜀 (5) 
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where a represents available data, and 𝐵 ∈ ℜ𝑛𝑎×𝑛𝑁𝑎𝑁 is a matrix of regression 

coefficients with a covariance matrix with missing and available data from n all 

sample markets. The 𝜀 ∈ ℜ1×𝑛𝑁𝑎𝑁  residual is assumed to be a zero-mean and 

𝐶 ∈ ℜ𝑛𝑁𝑎𝑁 ×𝑛𝑁𝑎𝑁  is an unknown covariance matrix vector. In each iteration of 

the EM algorithm, estimates of the mean 𝜇 ∈ ℜ1×𝑛  and of the Σ ∈
ℜ𝑛×𝑛  covariance matrix are taken as given, and from these estimates, the 

conditional maximum likelihood estimates of the matrix of regression 

coefficients B and of the covariance matrix C of the residual are computed for 

each record with missing values, in order to fill each missing value with imputed 

values, before recomputation of the entire 𝜇 vector and Σ matrix. Then, the 

estimated regression coefficients will be the product of the two (missing-missing 

and available-missing) estimated covariance matrices: 𝐵 = Σ𝑎𝑎
−1 Σ𝑎𝑁𝑎𝑁

  to estimate 

the residual covariance matrix later. However, the regularised EM algorithm for 

each record with missing values uses 𝐵 =  Σ𝑎𝑎
 + 𝑕2𝐷𝑖𝑎𝑔(Σ𝑎𝑎

 ) 
−1

Σ𝑎𝑁𝑎𝑁
  with a 

h regularisation parameter to inflate diagonal elements with a 1 + 𝑕2 factor. 

3.3 Panel Regression 

Panel regression requires consistent, balanced and fixed database to group 

country- and time-specific effects, and to manage heterogeneity that can or 

cannot be observed (Park 2011). The first generation of panel unit root tests like 

Im, Pesaran and Shin (2003) test requires the cross-sectional independence, with 

individual effects and no time trend:  

∆𝑦𝑖,𝑡 = 𝛼𝑖 + 𝜌𝑖𝑦𝑖,𝑡−1 +  𝛽𝑖,𝑧∆𝑦𝑖,𝑡−𝑧 + 𝜀𝑖,𝑡
𝑝𝑖
𝑧=1     

Null hypothesis: 𝜌𝑖=0 for all i=1,…,N and alternative hypothesis is 𝜌𝑖<0 for 

i=1,…,𝑁1 and 𝜌𝑖 =0 for i=𝑁1+1,…,N, with 0<𝑁1 ≤N alternative hypothesis 

allows for some (but not all) of the individual series to have unit roots. This test 

uses separate unit root tests for each cross-section units based on the (augmented) 

Dickey-Fuller statistics averaged across groups (Hurlin and Valérie 2007). 

The present paper applies the Panel Data Toolbox,
2
 following Alvarez, 

Barbero and Zofio (2015). Panel data (6) contains data matrices (with i columns 

and t rows) that were observed over a long period of time with y dependent and X 

independent variables with the following representation: 

𝑦𝑖𝑡 = 𝛼 + 𝛽𝑋𝑖𝑡 + 𝜇𝑖 + 𝑣𝑖𝑡 , i=1,…, n, t=1,…, 𝑇𝑖 . (6) 

where 𝜇𝑖  represents the i-th invariant time individual effect (or unobserved 

component, latent variable, and unobserved heterogeneity) and 𝑣𝑖𝑡~𝑖. 𝑖. 𝑑(0, 𝜃𝑣
2) 

                                                 
2
 http://www.paneldatatoolbox.com  

http://www.paneldatatoolbox.com/
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refers to the disturbance (or idiosyncratic errors or idiosyncratic disturbances, 

because these change across t as well as across i) with the following properties: 

𝐸 𝑣𝑖 = 0, 𝐸 𝑣𝑖𝑣𝑗  = 0, 𝐸 𝑣𝑖𝑣𝑖
𝑇 = 𝜃𝑣

2𝐼𝑇  for 𝑖 ≠ 𝑗,  𝐼𝑇 being the 𝑇 × 𝑇 identity 

matrix. In panel data models 𝜇𝑖  is called as a ‗‗random effect‘‘ when it is 

assumed as a random variable and a ‗‗fixed effect‘‘ when it is treated as a 

parameter to be estimated for each cross section observation i. It means that fixed 

effect approach allows arbitrary correlation between the unobserved effect 𝜇𝑖  and 

the observed explanatory variables 𝑋𝑖𝑡 . Fixed effects analysis is more robust than 

random effects analysis, but time-constant factors cannot be included as 𝑋𝑖𝑡  – this 

approach is for time-varying explanatory variables (Wooldridge 2010).  

The classical least squares model contains random error as a sole random 

component; all other effects are assumed to be fixed constants (Rawlings et al. 

1998). Fixed and random effects models were used in this paper to compare the 

impacts of different missing data handling methods on panel regression 

coefficients. Under standard fixed effect specifications, individual effects are 

correlated with the explanatory variables (𝐶𝑂𝑉(𝑋𝑖𝑡 , 𝜇𝑖) ≠ 0), their inclusion 

results in a biased OLS (ordinary least squares) estimation. To avoid such a bias, 

the within estimator of the parameters (7) – taking into account the variations in 

each group – is computed using OLS: 

𝛽 𝑓𝑒 = (𝑋 𝑇𝑋 )−1𝑋 𝑇𝑦     (7) 

where ―within‖ estimator 𝑦 = 𝑦 − 𝑦  and 𝑋 = 𝑋 − 𝑋  are transformed variables to 

represent deviations from the group means 𝑦  and 𝑋  (unbiased and consistent for 

𝑛 → ∞). Statistical inference (checked by the standard t and F tests) is generally 

based on the asymptotic variance-covariance matrix (8): 

𝑉𝐴𝑅 𝛽𝑓𝑒  =
(𝑦 −(𝑋 𝛽𝑓𝑒

 ))𝑇(𝑦 −(𝑋 𝛽𝑓𝑒
 ))

(𝑛𝑘 )−𝑛−𝑘
𝑋 𝑇𝑋 −1,  (8) 

where n denotes the elements of the panel (countries), k represents time (years). 

The individual effects, with their standard errors and significance test, can be 

computed as follows:  

𝜇 = 𝑦 − 𝑋 𝛽, (9) 

𝑉𝐴𝑅 𝜇𝑖 =
𝜎 𝑣

2

𝑇𝑖
+ 𝑋 𝑉𝐴𝑅 𝛽  + 𝑋 ′.  (10) 

In the general panel data model (6), the loss of degrees of freedom can be 

avoided if the individual effects can be assumed random, where the error 

component 𝑢𝑖𝑡 = 𝜇𝑖 + 𝑣𝑖𝑡  includes the i-th invariant time individual effects 𝜇𝑖  

and the disturbance 𝑣𝑖𝑡  (𝜇𝑖  is assumed independent of the 𝑣𝑖𝑡  as well as they are 
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independent of the explanatory variables: COV(𝑋𝑖𝑡 , 𝜇𝑖)=0 and COV(𝑋𝑖𝑡 , 𝑣𝑖𝑡 )=0 

for all i and t). 

𝑦𝑖𝑡 = 𝛼 + 𝑋𝑖𝑡𝛽 + 𝑢𝑖𝑡 , 𝑖 = 1,… , 𝑛 𝑎𝑛𝑑 𝑡 = 1,… , 𝑇𝑖  (11) 

The random effects model (11) is an appropriate specification in the analysis 

of large n number of individuals, randomly drawn from a large population. The 

composed error component has the following properties: 

𝐸(𝜇𝑖) = 𝐸(𝑣𝑖𝑡 ) = 𝐸(𝜇𝑖𝑣𝑖𝑡 ) = 0, (12)  

𝐸 𝜇𝑖𝜇𝑗  =  
𝜎𝜇

2 𝑖 ≠ 𝑗 

0 𝑖 = 𝑗
  𝐸 𝑣𝑖𝑣𝑗  =  

𝜎𝑣
2 𝑖 ≠ 𝑗 

0 𝑖 = 𝑗
 . (13) 

The block-diagonal covariance matrix can have serial correlation over time 

only between disturbances of the same individual, otherwise it is zero:  

𝐶𝑂𝑉 𝑢𝑖𝑡𝑢𝑗𝑠  =  
𝜎𝜇

2 + 𝜎𝑣
2 𝑖 = 𝑗 𝑡 = 𝑠 

𝜎𝜇
2 𝑖 = 𝑗 𝑡 ≠ 𝑠

  (14) 

The GLS (generalized least squares) method yields an efficient estimator of 

the parameters: 

𝛽 𝑟𝑒 = (𝑋𝑇(
1

(𝑇𝜎𝜇
2+𝜎𝑣

2)𝑃
+

1

𝜎𝑣
2𝑄

)−1𝑋)−1𝑋𝑇(
1

(𝑇𝜎𝜇
2+𝜎𝑣

2)𝑃
+

1

𝜎𝑣
2𝑄

)−1𝑦 =

(𝑋 𝑇𝑋 )−1𝑋 𝑇𝑦 (15) 

The P and Q are the matrices that compute the group means and the 

differences with respect to the group means. The asymptotic variance-covariance 

matrix will be similar to (8): 

𝑉𝐴𝑅 𝛽𝑟𝑒  =
(𝑦 −(𝑋 𝛽𝑟𝑒

 ))𝑇(𝑦 −(𝑋 𝛽𝑟𝑒
 ))

(𝑛𝑘 )−𝑘
𝑋 𝑇𝑋 −1,  (16) 

Either fixed or random effect is an issue of unmeasured variables or omitted 

relevance variables-the main difference between these models is the relation of 

the individual specific error component to regressors (Kennedy 2008).  

Several canonical tests should be done on the panel data regression models to 

identify serial correlation in the error term or to select the efficient estimator 

between fixed and random effects models – like the Hausman‘s test. The 

Hausman‘s test compares the GLS estimator of the random effects model 𝛽𝑟𝑒 , 

and the within estimator in the fixed effects model 𝛽𝑓𝑒 , both of which are 

consistent under the null hypothesis (𝐻0: 𝛽𝑓𝑒 − 𝛽𝑟𝑒 = 0). Under the alternative, 

only the GLS estimator of random effects is consistent. The computation is based 

on the difference between both estimators: 

𝐻 = (𝛽𝑓𝑒 − 𝛽𝑟𝑒 )′𝑉𝐴𝑅(𝛽𝑓𝑒 − 𝛽𝑟𝑒 )−1(𝛽𝑓𝑒 − 𝛽𝑟𝑒 ), (17) 
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under the assumption of homoscedasticity: 

𝑉𝐴𝑅 𝛽𝑓𝑒 −𝛽𝑟𝑒  = 𝑉𝐴𝑅 𝛽𝑓𝑒  − 𝑉𝐴𝑅(𝛽𝑟𝑒 ). (18) 

In applications where n is relatively large with respect to T, it can be used to 

choose between estimators. Fixed models are better under p<0.05 cases. 

3.4 Final Model 

 Keeping in mind the purpose of the present study, we selected indicators 

which closely describe the US motivations behind its own aid allocation. For this 

purpose, we considered indices which appeared in relevant literature. As a result, 

we collected data on the following variables: 

- Official Development Assistance provided by the United States as a 

dependent variable was collected from the OECD aid database
3
 (OECD 

2016). In our calculations, we used net disbursements which show the 

amount of aid paid in the reality. These amounts are paid on an 

agreement signed by the recipient country and the donor country. The 

agreement contains commitments on aid, but the real disbursements are 

mainly lower than the commitments. That is, disbursements show more 

precise picture on the processes. 

- US exports to the selected recipient countries describe the economic and 

commercial interests of the United States. These data were mainly 

collected from the detailed database of the Observatory of Economic 

Complexity (OEC 2016); although, because of the growing number of 

missing data after 2010, the UNCTADStat database (UNCTADStat 

2016) was also used for these last few years. The UNCTADStat contains 

bilateral trade data only from 1995 onwards. In order to control any 

distortion effect of using two databases, we checked whether there was 

any significant difference in data of the overlapping years (1995-2010). 

We experienced that the data from the two databases were very close to 

each other.  

- GDP and GDP per capita data were collected from the World Bank 

database. GDP per capita could be a proxy for poverty (as Fleck and 

Kelby 2010 described). 

                                                 
3
The most studies on aid effectiveness are based on data collected from the OECD‘s 

Creditor Reporting System (e.g. Ahmad et al. 2014, Cali and te Velde 2011, or Vijil and 

Wagner 2012), but there is another database for aid: AidData which is mainly used for 

the analysis of emerging donors. 
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- Democracy score describes the democracy status of the recipient country. 

We used Polity IV as an appropriate indicator: it is a combined polity 

score computed by the autocratic and democratic scores of a country; the 

scale ranges from +10 (strongly democratic) to -10 (strongly autocratic). 

There are several studies in which the same indicator was used (see, for 

instance, Fleck and Kelby 2010 or Vijil and Wagner 2012). 

- The number of armed conflicts in recipient countries refers to the war on 

terrorism aspect. To collect the data, we used the UCDP/PRIO database 

(UCDP/PRIO 2016): we added the number of conflicts in the years 

concerned in the analysis.  

The present study aims to analyse the motivations behind the aid allocation 

preferences of the United States. From this point of view, the readiness and real 

need of accepting aid in a recipient country would be also worth analysing: share 

of people living in absolute poverty, income inequality, health issues (epidemics, 

hospitals, or doctors), needs in education (illiteracy rate, enrolment in primary 

education), and so on. However, in the long-run, there are several missing data in 

the case of these social indicators, and in order to cover a relatively large sample, 

we decided to leave these indicators out of the analysis. If one decides to analyse 

a smaller number of countries, these indicators can be involved, too. 

In our analysis, we aimed to involve as many recipient countries as possible 

and take the longest time period into account. The OECD database enabled us to 

collect US aid data from 1960 to 2014 covering 97 countries; however, 

unfortunately, we had to exclude some countries from the analysis and narrow 

the time period due to the lack of data regarding other indices. Although there are 

many methods to handle the missing data problem (as described in the previous 

part), we concentrated on the missing data of the dependent variable (aid) and 

avoided making artificial data of independent variables because of the relatively 

high risk of its distorting effects on final results. Finally, 60 developing countries 

were involved in the empirical analysis and the time series covered the years 

between 1966 and 2014. This time series of nearly 50 years is appropriate to 

analyse missing data problems.  

Furthermore, we followed the standard analysis method in aid investigations 

(see, for instance, Fleck and Kelby 2010, Wagner 2003, Cali and te Velde 2011, 

Vijil and Wagner 2012): we calculated the natural logarithm of all variables in 

order to reduce the influence of outliers. The final model is as follows: 

𝑙𝑜𝑔𝑈𝑆 𝑎𝑖𝑑𝑖𝑡 =

𝛼 + 𝛽  logUS export, logGDP, log
GDP

capita
, Polity, armed conflict   

𝑖𝑡−1
+ 𝜇𝑖 + 𝑣𝑖𝑡 , (19) 
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where the dependent variable, USaidit refers to the US aid (official development 

assistance) allocated to country i in year t. In the model, the USexport shows the 

exports of the United States into recipient country i in year t-1; the GDP and 

GDP per capita indicators are features of the recipient country i in year t-1; Polity 

refers to the level of democracy in country i in year t-1, while armed conflict 

variable counts the number of civil and armed conflicts in country i in year t-1. In 

the model, 𝜇𝑖  represents the i-th invariant time individual effect and 

𝑣𝑖𝑡~𝑖. 𝑖. 𝑑(0, 𝜃𝑣
2) refers to the disturbance as equation (6) presented. 

Endogeneity may distort the results of regression models. In empirical 

analyses on aid allocation, this challenge is handled in three different ways: 

1. involvement of instrumental variable into the analysis (Acemoglu et. al. 

2001, Angeles and Neanidis 2009, Roodman 2007); 

2. calculation of averages following Vijil and Wagner (2012); 

3. most frequent method: use of lagged data (Cali and te Velde 2011, 

Kimura and Todo 2010, Wagner 2003, Younas 2008), but there is no 

consensus on the extent of the lag (Doucouliagos and Paldam 2009). 

We followed the most frequent method and used 1-year lagged data in our 

analysis. Its economic sense is that the US aid allocation was determined by the 

economic performance of previous years in the recipient countries.  

IV. RESULTS 

Seven per cent of the US Official Development Assistance data was missing 

between 1967 and 2014 (N= 2,784), and 47 per cent of the sample countries were 

affected by this issue. This temporary suspension of data can be originated from 

non-transparent aid decisions, or from lack of reporting to the OECD. Data from 

the 1960s and 1970s suffer more from missingness, so the phenomenon has a 

temporal property. We applied two methods: Last observation carried forward 

(LOCF) and EM methods. 

Comparing the two methods with t-test (Table II), we expected that LOCF 

and EM methods would provide similar outputs: they were not significantly 

different in their first four moments according to the t-test.  

TABLE II 

MISSING VALUE DIFFERENCES IN THE FIRST FOUR MOMENTS 

 mean standard 

deviation 

skewness kurtosis 

t-test (p) 0.34 0.32 0.35 0.37 

Source: Authors‘ calculation. 



Udvari, Kiss & Pontet: Challenges of Missing Data in Analyses of Aid Activity 17 

Unit root was rejected by the Im, Pesaran and Shin Panel Unit Root Test (see 

Appendix 1). Decision on fixed or random effects was based on the Hausman‘s 

test (Table III). In the context of the LOCF model, fixed effect models are proved 

to be more valid in the test, despite the fact that armed conflicts were significant 

in the random effect model.  

TABLE III 

HAUSMAN'S TEST OF SPECIFICATION ON LOCF DATA 

Varname A:FE B:RE Coef. Diff S.E. Diff 

logUS_export 0.067860 0.156730 -0.088869 0.004387 

logGDP 2.405092 1.403750 1.001342 0.063011 

logGDP/capita -2.886051 -1.678252 -1.207799 0.076868 

Polity -0.000973 -0.000933 -0.000040 0.000000 

armed_conflict 0.068831 0.129183 -0.060352 0.000000 

Note: A is consistent under H0 and H1 (A = FE);B is consistent under H0 (B = RE);H0: 

coef(A) - coef(B)  = 0;H1: coef(A) - coef(B) != 0;H = 255.134992 ~ Chi2(5);p-value = 

0.0000.       

Source: Authors‘ calculation. 

According to the results presented in Table IV, the long term aid policy of 

the United States between 1967 and 2014 was motivated largely by the GDP of 

the recipient country (as a proxy of the market), while the level of the GDP per 

capita had a decreasing effect on it, that is, the richer a recipient country is, the 

less aid is provided to it. Surprisingly, political regimes or armed conflicts had no 

significant impact on these decisions, although the sample was largely dominated 

by cold war or war on terror periods.  

TABLE IV 

PANEL: FIXED EFFECTS (WITHIN) (FE) ON LOCF DATA 

logUS_aid Coefficient Std. Error t-stat p-value 

constant −9.2521 0.9872 −9.372 0.000 *** 

logUS_export  −0.0241 0.0271 −0.8903 0.3734 

logGDP 0.6748 0.0756 8.924 0.000 *** 

logGDP/capita  −0.7402 0.0915 −8.085 0.000 *** 

Polity −0.0010 0.0009 −1.097 0.2726 

armed_conflict  0.0593 0.0465 1.277 0.2016 

logUS_aid t-1 0.7472 0.0127 58.64 0.0000 *** 

Note: N = 2,784  n = 58  T = 48 (Balanced panel), R-squared = 0.8471, Adj R-squared = 

0.6838, Wald F(5, 2721) = 234.0345, p-value = 0.0000, Durbin-Watson  2.188032.  

Source: Authors‘ calculation. 
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Fixed effects models were not affected by serial correlation as the nearly 2 

value of Durbin-Watson test suggested.   

In the context of the second model (EM), fixed effect models proved to be 

more valid by the Hausman‘s test in each case for EM data as well, despite the 

fact that armed conflicts were significant in the random effect model (Table V). 

This result is similar to those of the LOCF model. 

TABLE V 

HAUSMAN'S TEST OF SPECIFICATION ON EM DATA 

Varname A:FE B:RE Coef. Diff S.E. Diff 

logUS_export  0.0678 0.1567 -0.0889 0.0044 

logGDP 2.4050 1.4038 1.001 0.0630 

logGDP/capita  -2.886 -1.678 -1.2078 0.0769 

Polity -0.001 -0.001 -0.00004 0.0000 

armed_conflict  0.0688 0.1292 -0.0603 0.0000 

Note: A is consistent under H0 and H1 (A = FE);B is consistent under H0 (B = RE);H0: coef(A) - 

coef(B) = 0;H1: coef(A) - coef(B) != 0;H = 255.134992 ~ Chi2(5);p-value = 0.0000. 

Source: Authors‘ calculation. 

As for the results presented in Table VI, we see that the long term aid policy 

of the United States between 1967 and 2014 was largely motivated by the GDP, 

at the same time the GDP/capita had a reduction effect. That is, the results are the 

same as the results of the LOCF model. However, the EM data decreased the 

importance of coefficients: for logGDP with 0.5, for the logUS export with 0.01 

and for logGDP/capita with 0.12. It also provided high R-square by 0.8209, 

indicating a relatively strong dependency between the variables and the previous 

value of the aid. 

TABLE VI 

PANEL: FIXED EFFECTS (WITHIN) (FE) ON EM DATA 

US_aid  Coefficient Std. Error t-stat p-value 

constant −10.1577 1.04272 −9.742 0.000 *** 

logUS_export −0.0069 0.0288 −0.2410 0.8095 

logGDP 0.7329 0.0801 9.144 0.000 *** 

logGDP/capita −0.8309 0.0969 −8.572 0.000 *** 

Polity −0.0010 0.0010 -0.9910 0.3218 

armed_conflict 0.0705 0.0494 1.428 0.1533 

logUS_aid t-1 0.6969 0.0137 50.72 0.0000 *** 

Note: Durbin-Watson  2.216347, N = 2,784  n = 58,  T = 48 (Balanced panel), R-squared = 0.8209, 

Adj R-squared = 0.6229, Wald F(5. 2721) = 193.6990, p-value = 0.0000.  

Source: Authors‘ calculation. 
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Similar to the LOCF model, the fixed effects model of EM was not affected 

by serial correlation as the nearly 2 level of Durbin-Watson test suggested.   

In conclusion, in the case of US aid allocation, the results strengthen the view 

that there is no significant difference between the two methods of handling 

missing data (LOCF and EM), thus, in long term analyses both methods offer 

reliable results without a significant distortion effect. 

These results can be used by policy makers, too. It is always an important 

issue to analyse the motivations and effectiveness of foreign aid not only in the 

short term but also in the long run. Aid can have impacts on the long-run and the 

impacts may appear years later than aid was really provided. As a result, long-run 

analyses may provide more precise information on the effectiveness of aid. 

Furthermore, analysing long-term effectiveness is important from the point of 

view of accountability and transparency: a government should provide precise 

information for the public (and tax-payers) how aid was spent and what its main 

effects are. Furthermore, the long-run analyses of motivations behind aid 

allocation may improve aid effectiveness with considering the changes in 

motivations over the decades.   

V. CONCLUSIONS 

The problems of developing countries like poverty, migration, terrorism, and 

others mean a huge challenge not only for underdeveloped states but also for 

developed ones. To handle this global issue, promoting development in the third 

world would be an essential objective for the international community. One of 

the several international initiatives to support developing countries to catch up is 

international development cooperation and allocation of foreign aid to them. The 

system of international development cooperation has been operating for almost 

sixty years, but the effectiveness of foreign aid is still a central question and 

widely analysed with different methods. In most cases, it is the missing data that 

make long-term analyses difficult; hence, how to investigate the changes in the 

motivations of donor countries, the long-term economic effects of aid or other 

aid-related issues is not always evident for researchers.  

The purpose of this study was to compare two different methods of handling 

the missing data problem and to answer the question whether there is any 

difference between the results achieved with the two methods. To answer the 

question, the United States was an example: the motivations behind US aid 

allocation were analysed between 1966 and 2014. 
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This paper applied the panel regression model and compared two of the three 

mainstream missing value handling methods. As the results show, the long term 

aid policy of the United States between 1966 and 2014 was motivated largely by 

the GDP of the recipient country, while the level of the GDP per capita had a 

decreasing effect on it. That is, economic issues were more important for the 

United States than political ones, since political regimes or armed conflicts had 

no significant impact on aid decisions of the United States. Furthermore, 

concerning the possible divergence between the two methods of handling missing 

data, the results also show there is no significant difference between them, thus, 

in long term analyses both methods may offer reliable results without any 

significant distortion effect. 

However, the results raised more questions which still need to be 

investigated. The present paper only analysed the motivation side, but the long-

term aid effectiveness should be analysed, too: how the aid affects long-term 

poverty, GDP, education, and the overall development of a recipient country. 

Furthermore, aid volatility should be analysed. Since we could show that the 

problem of missing aid data can be overcome with different methods without any 

distorting effects, the opportunities for long-term analysis are now available. 
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ANNEX 1 

IM, PESARAN AND SHIN (2003) PANEL UNIT ROOT TEST  

RESULTS ON BALANCED PANEL 

Aid (LOCF) data:   

  P-value of the W_bar statistic = 0.0000  

  P-value of the Z_bar statistic = 0.0000  

  P-value of the Z_bar_DF statistic = 0.0000   

  Lag = 1   Adj. sample size = 2782   ADF statistic = -10.7310   ADF p-value = 0.0100 

Aid (EM) data:   

  P-value of the W_bar statistic = 0.0000  

  P-value of the Z_bar statistic = 0.0000  

  P-value of the Z_bar_DF statistic = 0.0000  

  Lag = 2   Adj. sample size = 2781   ADF statistic = -10.1174   ADF p-value = 0.0100 

lUS_export, lGDP, lGDP/capita, Polity, armed conflict data: 

  P-value of the W_bar statistic = 0.0000  

  P-value of the Z_bar statistic = 0.0000  

  P-value of the Z_bar_DF statistic = 0.0000  

  Cross-unit  lUS_export:  

  Lag = 0   Adj. sample size = 2783   ADF statistic = -8.8630   ADF p-value = 0.0100 

  Cross-unit  lGDP:  

  Lag = 0   Adj. sample size = 2783   ADF statistic = -8.7252   ADF p-value = 0.0100 

  Cross-unit  lGDP/capita:  

  Lag = 0   Adj. sample size = 2783   ADF statistic = -9.5289   ADF p-value = 0.0100 

  Cross-unit  Polity:  

  Lag = 2   Adj. sample size = 2781   ADF statistic = -17.1571   ADF p-value = 0.0100 

  Cross-unit  armed conflict:  

  Lag = 4   Adj. sample size = 2779   ADF statistic = -10.0910   ADF p-value = 0.0100 

 


